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Abstract. In this paper, we give a fully analytical description of the dynamics of an atom–field system,
described by an f -deformed Jaynes-Cummings model, in the presence of nonlinear quantum dissipation
and in the large detuning approximation. By solving analytically the f -deformed Liouville equation for
the density operator at zero temperature, we explore the influence of nonlinear quantum dissipation on
dynamical behavior of the atom-field system. Considering the field to be initially in a q-deformed coherent
state, it is found that in the presence of nonlinear quantum dissipation (i) the amplitude of the entanglement
between the field and the atom decreases with time, (ii) the sub-Poissonian characteristic of the initial
cavity-field is enhanced at the initial stages of the evolution, but as time goes on the photon counting
statistics asymptotically tends to the Poissonian statistics, and (iii) each of the two quadrature components
of cavity-field exhibits damped oscillatory squeezing in the course of time and their quantum noises are
asymptotically stabilized at the standard quantum limit.

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments – 42.50.Dv
Nonclassical states of the electromagnetic field, including entangled photon states; quantum state
engineering and measurements – 32.80.-t Photon interactions with atoms

1 Introduction

In quantum optics, one of the simplest and most non-
trivial systems is the so-called Jaynes–Cummings model
(JCM), which describes the interaction of a two-level
atom with a single mode of the quantized electromag-
netic field [1]. Investigations of the dynamical behavior
of this model are extremely important due to its exper-
imental realizations in high-Q microwave [2], in optical
resonators [3] and in laser-cooled trapped ions [4]. Stim-
ulated by the success of the JCM, more and more people
have paid special attention to extending and generalizing
the model in order to explore new quantum effects. Discus-
sions related to several interesting generalizations of this
model are now available in the literature [5] and the model
is still promising in many applications, particularly in the
fast developing research area of quantum information [6].

Among the generalized versions of the JCM the so-
called f -deformed Jaynes-Cummings model (f -DJCM)
has received much attention in view of its connection with
quantum algebras [7]. In addition, it has been shown [8]
that most of the nonlinear generalizations of the JCM
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are only particular cases of the f -DJCM. The quan-
tum algebras, introduced as a mathematical description
of deformed Lie algebras, have given the possibility of
generalizing the notion of creation and annihilation op-
erators of the usual quantum oscillator and to introduce
deformed oscillator. Some deformed versions of oscillator
algebra have found many applications to various physi-
cal problems, such as the algebraic treatment of quan-
tum exactly solvable models [9], the bosonization of su-
persymmetric quantum mechanics [10], the treatment of
vibrational spectra of molecules [11] and the investiga-
tion of nonlinearities in quantum optics [12]. The rep-
resentation theory of the quantum algebras with a sin-
gle deformation parameter q has led to the development
of the q-deformed oscillator algebras [13]. Using a q-
oscillator description Chaichian and co-workers [14] were
the first to generalize the JCM Hamiltonian with an
intensity-dependent coupling by relating it to the quan-
tum suq(1,1) algebra. Similarly, Buzek [15] hoping to ex-
tract possible information about the physical meaning of
the q-deformation, studied the atomic inversion of the
standard JCM with a q-deformed field initially prepared
in a maths- type q-deformed coherent state [16]. Bonatsos
et al. [17] treated various versions of the JCM and their
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q-deformed extensions in a unified formalism based on the
generalized deformed oscillator algebra. The quantum col-
lapse and revival effects as well as the squeezing properties
of the radiation field in the q-deformed version of the one-
photon on-resonant JCM were investigated by Crnugelj
et al. [18]. We have recently studied [19] the temporal
evolution of atomic inversion and quantum fluctuations
of atomic dipole variables in three variants of the two-
photon q-DJCM for both on-and off-resonant atom-field
interaction. Furthermore, by solving a dynamical prob-
lem characterized by a quite general f -DJCM, we have
very recently proposed [20] a theoretical scheme to show
the possibility of generating various families of nonlinear
(f -deformed) coherent states [21] of the radiation field in
a lossless coherently pumped micromaser.

However, all of the foregoing studies have been done
only under the condition that the influence of the environ-
ment is not taken into account. The environment which
is represented by a thermal reservoir always exists, and
affects the system considered. No matter how weak the
coupling to such an environment, the evolution of quan-
tum subsystems is eventually affected by non-unitary fea-
tures such as decoherence, dissipation and heating. From
a mathematical point of view, the relevant state space,
given by density matrices, has now a convex structure and
the allowed quantum dynamics is described by completely
positive maps. Initial pure states preparation are typically
corrupted on extremely short time scales due to quantum
coherence loss that turns them into mixed states [22]. The
initial information irreversibly leaks out the system into
the very large number of uncontrollable degrees of freedom
of the environment. Over the last two decades much atten-
tion has been focused on the properties of the dissipative
variants of the usual (non-deformed) JCM. The dissipative
effects caused by the energy exchange between the system
and environment have been studied both analytically [23]
and numerically [24]. Last few years the JCM with phase
damping (which occurs when there is no energy exchange
between the system and environment), as applied to de-
coherence and entanglement, has been also studied inten-
sively [25]. Furthermore, with the experimental realization
of two-photon micromaser [26] the dissipative two-photon
JCM has attracted a great deal of attention [27]. All of
the above-cited studies have shown that dissipation af-
fects markedly the dynamical behavior of the atom-field
system.

In the present contribution our main purpose is to
study the dynamical behavior of the atom-field system
in the framework of the f -deformed dissipative JCM in
the dispersive limit. Our model is based on the assump-
tion that not only the atom-field interaction but also the
coupling between the cavity-field and its environment is
deformed. Formally, the model Hamiltonian for the atom-
field system and the master equation for the reduced den-
sity operator of the damped field at zero temperature, re-
spectively, have the same structure as non-deformed JCM
and non-deformed master equation with the field opera-
tors â and â+ ([â, â+] = 1) replaced by the deformed os-
cillator operators Â and Â+ obeying the f -deformed com-

mutation relation [Â, Â+] = (n̂ + 1)f2(n̂ + 1) − n̂f2(n̂).
The nonlinearity function f(n̂) plays a central role in our
treatment since it determines the form of nonlinearities of
the field, the intensity-dependent atom-field coupling and
the intensity-dependent field-reservoir coupling. With the
field initially being in a q-deformed coherent state and the
atom initially prepared in a coherent superposition of its
ground and excited states, we investigate the influence of
the deformed (nonlinear) dissipation at zero temperature
on the atom-field entanglement, photon counting statistics
and quadrature squeezing of the cavity field.

The paper is organized as follows. In Section 2, we
introduce the theoretical model of dispersive interaction
between a single-mode cavity-field and a two-level atom
within the framework of an f -DJCM with an arbitrary
nonlinearity function f(n̂). In Section 3, we give an ana-
lytic solution for the f -deformed master equation describ-
ing the f -deformed interaction of the system “atom + field
mode” with a zero temperature reservoir. In Section 4, we
employ the analytic results obtained in Section 3 to inves-
tigate the influence of nonlinear (f -deformed) dissipation
on the dynamical properties of the f -DJCM. Finally, we
summarize our conclusions in Section 5.

2 The dispersive f-deformed JCM

In this section, we consider a deformed single-mode field
interacting with an effective two-level atom without con-
sidering the influence of the dissipation. The Hamiltonian
of the system under the rotating wave approximation has
the following form

Ĥ = ωÂ+Â+ 1/2ωeg σ̂z + g
(
Â+σ̂− + Âσ̂+

)
(� = 1),

(1)
where the two atomic levels |e〉 (excited state) and |g〉
(ground state) separated by an energy difference ωeg are
represented by the Pauli matrices, the coupling constant g
is a real number and ω is the frequency of the field. The
operators Â and Â+ are the f -deformed annihilation and
creation operators constructed from the usual bosonic op-
erators â, â+ ([â, â+] = 1) and number operator n̂ = â+â

as Â = âf(n̂) and Â+ = f(n̂)â+, in which f(n̂) is an ar-
bitrary real function of n̂. The deformed operators Â, Â+

satisfy the f -deformed bosonic oscillator commutation re-
lations

[Â, Â+] = (n̂+ 1)f2(n̂+ 1) − n̂f2(n̂),

[Â, n̂] = Â, [Â+, n̂] = −Â+. (2)

It is evident that in the limiting case f(n̂) = 1,
the Hamiltonian (1) becomes the conventional (non-
deformed) JC Hamiltonian and the algebra (2) reduces
to the well-known Heisenberg-Weyl algebra generated by
â, â+ and the identity Î. The f -DJCM given by (1) is
of considerable interest because of its relevance to the
study of the intensity-dependent interaction between a
single atom and the radiation field in quantum optics [28]
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as well as the study of the quantized motion of a single
ion in an anharmonic-oscillator potential trap [29]. It has
been shown [19] that the above Hamiltonian describes an
intensity–dependent coupling between a single two-level
atom and a non-deformed single-mode radiation field in
the presence of an additional nonlinear interaction. As a
well-known example if we choose f(n̂) =

√
1 + k(n̂− 1),

where k is a positive constant, the model consists of a
single two-level atom interacting through an intensity-
dependent coupling with a single–mode field surrounded
by a nonlinear Kerr-like medium contained inside a loss-
less cavity. Physically, this model may be realized as if the
cavity contains two different species of Rydberg atoms, of
which one behaves like a two-level atom and the other
behaves like an anharmonic oscillator in the single mode
field of frequency ω [30].

The eigenvalues and eigenstates of the Hamiltonian (1)
are respectively given by [19]

E±,n =
ω

2
(
(n+ 1)f2(n+ 1) + nf2(n)

)

± 1
2

√
∆2
n + 4g2(n+ 1)f2(n+ 1), (3a)

|+, n〉 = cosϑn |e, n〉 + sinϑn |g, n+ 1〉 , (3b)
|−, n〉 = sinϑn |e, n〉 − cosϑn |g, n+ 1〉 , (3c)

where by definition

∆n ≡ ∆− ω
(
(n+ 1)f2(n+ 1) − nf2(n) − 1

)
,

(∆ ≡ ωeg − ω) (4a)

cosϑn ≡ 2g
√

(n+ 1)f2(n+ 1)√
(Ωn −∆n)2 + 4g2(n+ 1)f2(n+ 1)

, (4b)

sinϑn ≡ (Ωn −∆n)√
(Ωn −∆n)2 + 4g2(n+ 1)f2(n+ 1)

, (4c)

with
Ωn ≡

√
∆2
n + 4g2(n+ 1)f2(n+ 1), (4d)

as the f -deformed Rabi frequency. Depending on the form
of f(n̂) the function Ωn has a different behavior in com-
parison with the conventional Rabi frequency. For exam-
ple, in the nondeformed case, f(n̂) = 1, the minimum of
energy separation ∆En ≡ E+,n − E−,n occurs at ∆ = 0,
while for f(n̂) �= 1 the value of ∆ at which the minimum
separation of eigenenergies occurs is shifted [19].

Following Peixoto et al. [31], in the large detuning ap-
proximation, that is

ωeg − ω � ω
(
(n+ 1)f2(n+ 1) − nf2(n) − 1

)

+
√
g2(n+ 1)f2(n+ 1), (5)

for any “relevant” photon number, we arrive at the
f -deformed effective Hamiltonian

Ĥeff = ωÂ+Â+ 1/2ωegσ̂z + Ĥ
(I)
eff , (6a)

Ĥ
(I)
eff ≡ k

(
AÂ+ |e〉 〈e| − Â+Â |g〉 〈g|

)
, (6b)

with k ≡ g2
/
∆. The above effective Hamiltonian which

does not cause any transition in the system creates an en-
tanglement between the atomic and the field states. For a
dispersive non-deformed JCM this entanglement has been
studied in detail and it has been used extensively in the
context of the generation of Schrödinger cats and atom
optics in quantized light fields [32].

3 The f-deformed master equation
and its analytic solution

We now consider the f -deformed field interacting disper-
sively with a single two-level atom and coupled to a zero
temperature reservoir. Recently, Isar et al. [33] have de-
rived a master equation for the f -deformed harmonic oscil-
lator in the presence of a dissipative environment, for the
case of an f -deformed interaction of the oscillator with its
environment. Considering the environment as a thermal
bath at equilibrium temperature T , the master equation
for the damped f -deformed oscillator in the interaction
picture has the following form under the Born-Markov ap-
proximation [32]

d

dt
ρ̂D.O(t) =

λ

2

([[
coth

�ωΩ(n̂)
2kBT

Â, ρ̂D.O(t)
]
, Â+

]

−
[
Â+,

{
Â, ρ̂D.O(t)

}]
+ h.c.

)
, (7)

where, ρ̂D.O is the reduced density operator for the
f -deformed oscillator with frequency ω, λ is the dissipa-
tion constant, kB is the Boltzman constant, and by defi-
nition

Ω(n̂) ≡ 1
2

(
(n̂+ 2)f2(n̂+ 2) − n̂f2(n̂)

)
. (8)

Furthermore, in equation (7) the notation { , } stands for
anticommutator. Equation (7) is the f -deformed version
of the master equation for a conventional (non-deformed)
damped harmonic oscillator obtained in the framework of
the Lindblad theory for open quantum systems [34]. If
the bath temperature is T = 0, the master equation (7)
simplifies

d

dt
ρ̂D.O(t) = −λ

(
Â+Âρ̂D.O(t)

+ρ̂D.O(t)Â+Â− 2Âρ̂D.O(t)Â+
)
. (9)

Therefore, the evolution of the compound atom-field sys-
tem in a dispersive f -deformed JCM and in the presence
of the f -deformed (nonlinear) dissipation at zero temper-
ature can be written in the interaction picture as

d

dt
ρ̂(t) = −i

[
Ĥ

(I)
eff , ρ̂(t)

]
− Lnlρ̂(t), (� = 1), (10)

where ρ̂ is the atom-field density operator, Ĥ
(I)
eff is

given by equation (6b) and the nonlinear (f -deformed)
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superoperator Lnl is defined as

Lnl. ≡ λ
(
Â+Â . + .Â+Â− 2Â. Â+

)

= λ
(
â+âf (â+â). + .â+âf(â+â)

− 2âf(â+â). f(â+â)â+
)
, (11)

containing the non-unitary contributions to the dynam-
ics of ρ̂(t). This superoperator is a linear combination of
bosonic superoperators [31,35], which form a finite Lie
algebra under commutation. The bosonic superoperators
represent the action of creation and annihilation operators
of the harmonic oscillator on an operator Ô:

a�Ô ≡ âÔ,
(
a�

)+
Ô ≡ â+Ô,

arÔ ≡ Ôâ, (ar)+ Ô ≡ Ôâ+. (12)

The sets
(
a�, (a�)+, 1

)
and (ar, (ar)+, 1) constitute left and

right realizations of the Heisenberg-Weyl group hw(4) [36],
denoted hw l(4) and hwr(4), respectively. From the funda-
mental commutation relation [â, â+] = 1 and the def-
initions given by (12), one can derive the commutation
relations between the bosonic superoperators

[
a�,

(
a�

)+
]

= 1,
[
ar, (ar)+

]
= −1. (13)

A superoperator belonging to hw l(4) commutes with an-
other belonging to hwr(4). The bilinear products of these
superoperators are

M ≡ (
a�

)+
a�, P ≡ ar (ar)+ , J ≡ a� (ar)+ = (ar)+ a�.

(14)
The above defined superoperators generate a finite Lie
algebra. It is easy to show that

[J,M ] = J, [J, P ] = J, [M,P ] = 0,

[J, f2(M)] = J
(
f2(M) − f2(M − 1)

)
,

[J, f2(P )] = J
(
f2(P ) − f2(P − 1)

)
. (15)

Now the master equation (10) can be solved by apply-
ing the dynamical symmetry method proposed in refer-
ence [37]. For this purpose, we assume that the two-level
atom is initially prepared in a coherent superposition of
the excited state |e〉 and the ground state |g〉,

ρ̂a(0) = |ψ〉a a〈ψ| =
∑

i,j=e,g

cic
∗
j |i〉 〈j| , |ce|2 + |cg|2 = 1,

(16)
and the field is initially in a nonlinear (f -deformed) co-
herent state |z〉f ,

ρ̂f (0) = |z〉f f 〈z| =
∞∑

m,n=0

Qn(z)Q∗
m(z) |n〉 〈m|, (17)

where Qn(z) ≡ Nzn/
√

(nf2(n))! (N , normalization con-
stant) and z ≡ |z|eiψ. The states |z〉f are defined as
right eigenstates of the f -deformed annihilation operator

Â = âf(N̂), i.e. Â |z〉f = z |z〉f . Suppose that at the mo-
ment the interaction between the atom and the field starts,
the state of the atom-field system is the direct product of
equations (16) and (17), ρ̂(0) = ρ̂a(0)⊗ ρ̂f (0). After some
lengthy but straightforward calculation we obtain the fol-
lowing analytical expressions for the matrix elements of
the atom-field density operator ρ̂ij(t) (i, j = e, g),

ρ̂ee(t) = |ce|2
∞∑

n,m=0

Qn(z)Q∗
m(z)

× exp (Γee(A(m,n), B(m,n), t)
+ iΦee(A(m,n), B(m,n), t)) |n〉 〈m| , (18a)

ρ̂gg(t) = |cg|2
∞∑

n,m=0

Qn(z)Q∗
m(z)

× exp (Γee(A(m− 1, n− 1), B(m,n), t)
+ iΦee(A(m− 1, n− 1), B(m,n), t)) |n〉 〈m| , (18b)

ρ̂eg(t) = c∗ecg
∞∑

n,m=0

Qn(z)Q∗
m(z)

× exp (Γeg(B(m,n), t)+iΦeg(B(m,n), t)) |n〉 〈m| , (18c)

ρ̂ge(t) = cec
∗
g

∞∑
n,m=0

Qn(z)Q∗
m(z)

×exp(Γeg(B(n,m), t) − iΦeg(B(n,m), t)) |n〉 〈m| , (18d)

where

Γee(A(m,n), B(m,n), t) = −λt (mf2(m) + nf2(n)
)

+
2λ|z|2

λ2B2(m+ 1, n+ 1) + k2A2(m+ 1, n+ 1)

×
{
λB(m + 1, n+ 1) − e−λtB(m+1,n+1)

× [λB(m+ 1, n+ 1) cos(ktA(m+ 1, n+ 1))

−kA(m+ 1, n+ 1) sin(ktA(m+ 1, n+ 1))]
}
, (19a)

Φee(A(m,n), B(m,n), t) = kt
(
(m+ 1)f2(m+ 1)

−(n+ 1)f2(n+ 1)
)

− 2λ|z|2
λ2B2(m+ 1, n+ 1) + k2A2(m+ 1, n+ 1)

×
{
kA(m+ 1, n+ 1) − e−λtB(m+1,n+1)

[(kA(m+ 1, n+ 1) cos(ktA(m+ 1, n+ 1))

+kB(m+ 1, n+ 1) sin(ktA(m+ 1, n+ 1))]
}
, (19b)
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Γeg(B(m,n), t) = −λt (mf2(m) + nf2(n)
)

+
2λ|z|2

λ2B2(m+ 1, n+ 1) + k2B2(m+ 2, n+ 1)

×
{
λB(m+ 1, n+ 1) − e−λtB(m+1,n+1)

× [λB(m+ 1, n+ 1) cos(ktB(m+ 2, n+ 1))

−kB(m+ 2, n+ 1) sin(ktB(m+ 2, n+ 1))]
}
, (19c)

Φeg(B(m,n), t) = −kt ((m+ 1)f2(m+ 1)

+(n+ 1)f2(n+ 1)
)

− 2λ|z|2
λ2B2(m+ 1, n+ 1) + k2B2(m+ 2, n+ 1)

×
{
kB(m+ 2, n+ 1) − e−λtB(m+1,n+1)

× [(kB(m+ 2, n+ 1) cos(ktB(m+ 2, n+ 1))

+λB(m+ 1, n+ 1) sin(ktB(m+ 2, n+ 1))]
}
, (19d)

together with

A(m,n) = (m+ 1)f2(m+ 1) −mf2(m)

− (n+ 1)f2(n+ 1) + nf2(n), (19e)

B(m,n) = mf2(m) − (m− 1)f2(m− 1)

+ (n+ 1)f2(n+ 1) − nf2(n). (19f)

Making use of the solution given by (18), one can evalu-
ate the mean values of operators of interest. In the next
section we shall use it to investigate various dynamical
properties of the dissipative f -DJCM in the dispersive ap-
proximation.

4 Dynamical properties of the model

In this section, we study the influence of the f -deformed
dissipation on the time evolution of various properties of
the f -DJCM, particularly its non-classical features.

4.1 Linear entropies and atom-field entanglement

It is well-known that if the field and the atom in the JCM
are initially prepared in a pure state, then at t > 0 the
atom-field system evolves into an entangled state. In this
entangled state, the field and the atom separately are in
mixed states. The entanglement between the atom and the
field, as well as the decoherence induced by the cavity of
the usual dispersive JCM was studied in reference [31]. It
has been shown that the cavity has practically no influence
on the coherence properties of the field from a qualitative
point of view. However, although the atom is not directly
coupled to the cavity-field, its coherence properties are
strongly influenced by dissipation both qualitatively and
quantitatively.

(a)

(b)

Fig. 1. Time evolution of the linear entropies sa−f (t) ( ),
sa(t) (- - - -) and sf (t) ( ) as functions of the scaled time

kt, for f(n) =
√

(qn − 1)/[n(q − 1)], q = 0.9, ce = cg = 1/
√

2,
|z|2 = 5 and for different values of the dissipation constant;
(a) λ/k = 0.05, (b) λ/k = 0.1.

The stability of quantum coherence may be understood
as the process where quantum coherence of the state of a
physical system is preserved along its time evolution. In
this sense we say that an initial pure quantum state, de-
scribed by a density operator ρ̂, is “stable” if Tr ρ̂2 = 1, for
all times. One way to measure decoherence, or the stabil-
ity of an initial pure state is to use the linear entropy [38]
s = 1 − Tr ρ̂2. The time evolution of the atomic (field)
entropy reflects the time evolution of the degree of entan-
glement between the atom and the field. The higher the
entropy is, the greater the entanglement between the atom
and the field becomes.

In the non-deformed dispersive JCM [31] only the co-
herence of the atom is influenced by the cavity, though the
atom does not couple to the cavity directly. The coher-
ence of the field remains unchanged by the environment
and the linear entropy of the field behaves periodically,
with a maximum value 0.5 and a minimum value 0, which
correspond to the entanglement and disentanglement be-
tween the field and the atom, respectively. However, in
the f -DJCM we considered, the field is also affected by
the cavity and its coherence will lose due to the nonlinear
dissipation. In Figures 1a and 1b we display the influence
of nonlinear dissipation on time evolution of the linear en-
tropies of the atom-filed system, sa−f(t) = 1−Tr

(
ρ̂2(t)

)
,

of the field, sf (t) = 1 − Trf (ρ̂2
f (t)), and of the atom,
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sa(t) = 1−Tra
(
ρ̂2
a(t)

)
, as functions of the scaled time kt,

in the special case f(n) =
√

(qn − 1)/[n(q − 1)] (0 < q <
∞). The deformation parameter q may be viewed as a
phenomenological constant controlling the strength of the
intensity-dependent coupling between the atom and the
field as well as between the field and the reservoir. Fur-
thermore, this choice of nonlinearity function f(n) corre-
sponds to the maths-type q-deformed coherent state [16]
as the initial state of the cavity-field. As it is seen, both
the field and the atom linear entropies have damped oscil-
lations. The presence of the local maxima and minima
in the temporal evolution of sa(t) and sf (t) is due to
the entanglement and disentanglement between the field
and the atom. Because of the influence of dissipation on
the entanglement, the amplitude of the entanglement de-
creases with the time. During the repeating periods of en-
tanglement and disentanglement, the field loses and gains
its coherence. One finds that the larger λ is, the more
quickly the amplitude is suppressed, and the more rapidly
sa−f (t), sf (t) and sa(t) reach their maximum values and
asymptotic values.

4.2 Photon counting statistics

One of the most remarkable non-classical effect is the
sub-Poissonian photon statistics of the field state. To
determine such effect we consider the MandelQ parameter
defined by [39]

Q(t) =

(〈
n̂(t)2

〉 − 〈n̂(t)〉2
)
− 〈n̂(t)〉

〈n̂(t)〉

=

(
Trf (ρ̂f (t)n̂2) − (Trf (ρ̂f (t)n̂))2

) − Trf (ρ̂f (t)n̂)
Trf (ρ̂f (t)n̂)

. (20)

For Q < 0 (Q > 0), the statistics is sub-Poissonian (super-
Poissonian); Q = 0 stands for Poissonian statistics. In
Figure 2a we have plotted Mandel Q parameter versus
the scaled time kt for the same corresponding data used
in Figures 1 but for some different values of λ/k. As it is
seen, at the initial stages of evolution the sub-Poissonian
characteristic of the cavity-field is enhanced (note that
the initial cavity-field, i.e. maths-type q-deformed coher-
ent state, is sub-Poissonian for q < 1). However, as time
goes on, the Mandel parameter increases and it is finally
stabilized at an asymptotical zero value corresponding to
the Poissonian statistics. The rates with which the en-
hancement of sub-Poissonian statistics and reaching the
Poissonian statistics occur are directly proportional to the
dissipation constant λ; the greater λ is, the more quickly
the Mandel parameter decreases, and the more rapidly it
tends to the asymptotic value.

It is worth noticing that in the case of usual
(non-deformed) dissipative and dispersive JCM, i.e. for
f(n̂) = 1, at the initial stages of evolution the Mandel
parameter increases in comparison with its initial value
(Q = 0) which shows super-Poissonian statistics. As time
goes on, this parameter decreases and finally tends to Pois-
sonian statistics (see Fig. 2b).

(a)

(b)

Fig. 2. Time evolution of the Mandel parameter as a function
of the scaled time kt, for ce = cg = 1/

√
2, |z|2 = 5; (a) f(n) =√

(qn − 1)/[n(q − 1)], q = 0.9; ( ): λ/k = 0.05, ( ):
λ/k = 0.1, (- - - -): λ/k = 0.2, (b) f(n) = 1; ( ): λ/k =
0.05, ( ): λ/k = 0.1, (- - - -) : λ/k = 0.2.

4.3 Quadrature squeezing of the cavity-field

The experiments on photon antibunching and sub-
Poissonian statistics have concerned with the intensity or
photon-number fluctuations of electromagnetic field. Lat-
ter, there was a major studies focused on the fluctuations
in the quadrature amplitudes of the electromagnetic field
to produce squeezed light. This light is indicated by hav-
ing less noise in one field quadrature than vacuum state
with an excess of noise in the conjugate quadrature such
that the product of canonically conjugate variances must
satisfy the uncertainty relation. In the studies of quan-
tum optics theory, this light occupies a wide area because
of its various applications, e.g., in optical communication
networks [40], in interferometric techniques [41], and in
optical waveguide tap [42]. Furthermore, investigation of
the squeezing properties of the radiation field is a cen-
tral topic in quantum optics and noise squeezing can be
measured by means of homodyne detection [43].

In order to investigate the quadrature squeezing of the
dissipative f -DJCM in the presence of nonlinear cavity
damping, we introduce the two slowly varying Hermitian
f -deformed quadrature components X̂1A and X̂2A defined
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by, respectively,

X̂1A(t) ≡ 1
2
(Âeiωt + Â+e−iωt),

X̂2A(t) ≡ 1
2i

(Âeiωt − Â+e−iωt). (21)

In the limiting case f(n̂) = 1, these two operators re-
duce to the conventional (non-deformed) quadrature op-
erators [43]. The commutation of X̂1A(t) and X̂2A(t) is

[X̂1A(t), X̂2A(t)] =
i

2
(
(n̂+ 1)f2(n̂+ 1) − n̂f2(n̂)

)
. (22)

The variances 〈(∆X̂iA(t))2〉 ≡ 〈X̂2
iA(t)〉 − 〈X̂iA(t)〉2

(i = 1, 2) satisfy the uncertainty relation

〈(∆X̂1A(t))2〉〈(∆X̂2A(t))2〉 ≥
1
16

(〈(n̂+ 1)f2(n̂+ 1) − n̂f2(n̂)〉)2. (23)

A state of the field is said to be squeezed when one of the
quadrature components X̂1A(t) and X̂2A(t) satisfies the
relation
〈
(∆X̂iA(t))2

〉
<

1
4

(〈
(n̂+ 1)f2(n̂+ 1) − n̂f2(n̂)

〉)

(i = 1 or 2). (24)

The degree of squeezing can be measured by the squeezing
parameter Si(i = 1, 2) defined by

Si(t) ≡ 4〈(∆X̂iA(t))2〉 − (〈(n̂ + 1)f2(n̂+ 1) − n̂f2(n̂)〉),
(25)

which can be expressed in terms of the f -deformed anni-
hilation and creation operators of the field as follows

S1(t) = 2B0(t) + 2Re(B2(t)) − (2Re(B1(t)))2, (26a)

S2(t) = 2B0(t) − 2Re(B2(t)) − (2Im(B1(t)))2, (26b)

where

B0(t) ≡ 〈Â+Â〉, B1(t) ≡ 〈Â〉eiωt, B2(t) ≡ 〈Â2〉e2iωt.
(26c)

Then, the condition for squeezing in the quadrature com-
ponent can be simply written as Si(t) < 0.

In Figures 3a and 3b we have plotted the squeezing pa-
rameters Si(t) (i = 1, 2) versus the scaled time kt for the
same corresponding data, respectively, used in Figures 1a
and 1b. As it is seen, S1(t) and S2(t) show damped oscilla-
tory behavior and each of the two quadrature components
exhibits squeezing in the course of time evolution. Because
of the influence of nonlinear dissipation, the amplitude of
the squeezing decreases with the time. Furthermore, with
the increasing value of dissipation constant, the amplitude
of the oscillations of S1(t) and S2(t) is further suppressed,
and the quadrature squeezing becomes weaker. After some
time, S1(t) and S2(t) are stabilized at an asymptotical zero
value; the larger the dissipation constant λ is, the more
rapidly S1(t) and S2(t) reach the asymptotic value zero.

It is noticeable that in the case of usual (non-deformed)
dissipative and dispersive JCM, i.e. for f(n̂) = 1, neither
X̂1A nor X̂2A exhibits squeezing (see Fig. 3c).

(a)

(b)

(c)

Fig. 3. Time evolution of S1(t) ( ) and S2(t) ( ) as
functions of the scaled time kt, for ce = cg = 1/

√
2, |z|2 = 5;

(a) f(n) =
√

(qn − 1)/[n(q − 1)], q = 0.9, λ/k = 0.05, (b)

f(n) =
√

(qn − 1)/[n(q − 1)], q = 0.9, λ/k = 0.1, (c) f(n) = 1,
λ/k = 0.05.

5 Summary and conclusions

Our purpose was to study the dynamical properties of
an atom–field system, described by an f -DJCM, in a de-
formed interaction with a dissipative environment, mod-
eled as a thermal bath at zero temperature. In the large
detuning approximation, by applying the dynamical sym-
metry method, we solved the f -deformed master equation
to obtain analytical expressions for the matrix elements
of the atom-field density operator. Whilst the model was
quite general, we looked specifically at a special choice
of the nonlinearity, i.e. q-nonlinearity. Considering the
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cavity-field to be initially in a q-deformed coherent state
and the two-level atom to be in a coherent superposition
of its excited and ground states, we investigated the influ-
ence of the deformed (nonlinear) dissipation at zero tem-
perature on the atom-field entanglement, photon count-
ing statistics and quadrature squeezing of the cavity-field.
We found: (1) both the field and the atom linear en-
tropies have damped oscillations and due to the influence
of dissipation on the entanglement, the amplitude of the
entanglement decreases with the time. The larger dissipa-
tion constant λ is, the more quickly the amplitude is sup-
pressed, and the more rapidly the linear entropies reach
their maximum values and asymptotic values. (2) At the
initial stages of evolution the sub-Poissonian characteris-
tic of the cavity-field is enhanced. However, as time goes
on, the Mandel parameter increases and it is finally stabi-
lized at an asymptotical zero value corresponding to the
Poissonian statistics; the greater λ is, the more quickly the
Mandel parameter decreases, and the more rapidly it tends
to the asymptotic value. (3) The cavity-field quadratures
show damped oscillatory behavior and each of the two
quadrature components exhibits squeezing in the course of
time evolution. The larger λ is, the more rapidly quadra-
ture components reach the asymptotic value zero.

The model presented here has not only demonstrated
the basic features of the dissipative dynamics of an
f -deformed Jaynes-Cummings model theoretically, but is
of experimental importance in measuring the observable
quantities of the atom-field system in a dissipative cavity
containing any kind of nonlinearities in the future, pro-
viding some guidelines to experimentalists in the identifi-
cation of the kind of unknown nonlinear medium and the
utilization of the nonlinearities of dissipative f -DJCM.

It is noticeable that the dispersive f -DJCM may be
used in the context of the generation of the so-called
f -deformed Schrödinger cat states. Therefore, it is ex-
pected that our treatment may be applied to investigate
the dissipative dynamics of those states and the related
coherence properties. We hope to report on such issue in
a forthcoming paper.
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